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turbulent vortices. In the case of compressible plasma flow with velocity shear ion acoustic fluctuations in addition to vortices will 
be generated. We present a detailed analysis of the excitation of such low frequency oscillations in a compressible plasma flow with 
velocity shear. To examine the process of excitation and nonlinear saturation of low frequency oscillations in the presence of a flow 
shear a nonlinear system of equations was derived. We employ a predictor-corrector method to solve this system numerically. 
Spectral analysis of the numerical solutions allows us to calculate the turbulent density spectra for different velocity profiles. We 
find that the impact of this turbulence associated with ion-acoustic wave fluctuations is considerably more significant and dominant 
than that due to turbulent vortices. On employing a single scattering perturbation theory we observe that the electromagnetic 
scattering from the turbulent density fluctuations of the flow results in shifted signal spectra above and below that of the source. 
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1. INTRODUCTION 

The problem of electromagnetic (EM) wave scattering for waves propagating through a 

plasma sheath surrounding reentry vehicles and vehicles traveling at hypersonic 

velocities at high altitudes has attracted the attention of many researchers [1-4]. In this 

report the influence of low frequency wave turbulence excited in a compressible 

supersonic plasma flow with velocity shear around a vehicle is analyzed. A system of 

nonlinear equations consisting of the momentum equations for ions, the mass 

conservation equations for ions and electrons, and an equation for the density of adiabatic 

electrons is presented. These equations are complemented by the Poisson equation for the 

electrostatic potential associated with the excitation of ion acoustic perturbations due to 

the presence of the flow shear. Our equations appropriately take into consideration the 

effects of ion-neutral collisions and ion viscosity. This system of equations is solved 

numerically and wave spectra of excited low frequency perturbations are obtained. We 

investigate the interaction of the incident EM wave and low frequency turbulent 

pulsations inside a plasma sheath, considering them relatively small. In this case we can 

separate incident and scattered waves. At the same time characterizing the interaction of 

the incident wave with the turbulent plasma pulsations requires the use of nonlinear 

equations [5, 6]. The nonlinear current generated by this process in the case of a high 

frequency incident EM wave contains only the electron component. On analyzing the 

dispersion equation for electromagnetic, electrostatic Langmuir, and ion acoustic waves 

involved in the scattering process, we find that different types of scattering scenarios are 

possible. In the case when the frequency of the EM signal is much greater than the 

electron plasma frequency (
0 pe

  ), the scattered waves will also be electromagnetic 

with frequency 
0 A

  , where 
A

 is the frequency of the ion acoustic wave generated by 

the excited turbulent wave spectrum. In the case when the frequency of the incident EM 

signal is close to the electron plasma frequency (
0 pe

  ), two processes can take place: 

1. Scattering of the incident EM signal into another EM wave with the frequency  

0 A
  . 
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2. Transformation of the incident EM signal into a Langmuir wave with frequencies 

in the range 
0 A  .  

We find that turbulence caused by such ion acoustic wave instabilities can strongly 

influence the properties of electromagnetic waves, potentially impacting the quality of 

communication channels.  

 

The following is the layout of this report. In Section II, we present the multi-fluid 

equations underlying our linear stability analysis and the nonlinear saturation stage of the 

instability associated with a velocity shear in the plasma flow. In Section III we discuss 

numerical solutions of the nonlinear equations including a description of the spectra of 

generated density perturbations associated with the ion acoustic waves. In Section IV we 

analyze the scattering of the incident EM wave on the electron density perturbations and 

calculate the amplitudes of the scattered waves and scattering cross sections for the two 

cases described above. We conclude the report with a summary and a discussion of the 

main results.   

 

2. INSTABILITY OF A PLASMA FLOW WITH A VELOCITY SHEAR  

 

In the present section we investigate the excitation of vortices and ion acoustic type 

perturbations in a compressible supersonic plasma flow with velocity shear. A system of 

nonlinear equations consisting of the momentum equations for ions, the mass 

conservation equations for ions and electrons, and an equation for the density of adiabatic 

electrons is presented below. These equations are complemented by the Poisson equation 

for the electrostatic potential associated with the excitation of ion acoustic perturbations 

due to the presence of the flow shear. Equations presented below also properly take into 

consideration the effects of ion-neutral collisions and ion viscosity. We are interested in 

the excitation of turbulent pulsations in a compressible supersonic plasma flow with 

velocity shear in the two-dimensional case (see Figure 1 below). 
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Fig. 1.  Plasma flow has velocity 0 ( )y xv  directed along the y axis and velocity shear is 

along the x axis.  
 

The basic equations which describe the plasma flow are as follows: 

 

1.  Equation of motion for the ions: 

            ( ) ( )i
i i i i i i i i i i ia i ia i am n Z en P m n n

t
   

 
          

 

v
v v v v v                          (1)  

2. Equation for the adiabatic electrons:  

                                      e e eT n en                                                                             (2)                                                                                                             

3. Mass conservation equation for the ions:                                                                

         i( ) 0i
i

n
div n

t


 


v                                                                       (3) 

 

4. Poisson equation for the electrostatic potential:                                                                                                                                                                                  

             4 ( )e ie n n                                                                        (4)                                                                                                          
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In equations (1)-(4) the flow velocity can be presented in the following form: 

 

                                 i 0 i( ) ( , , )y yv x x y t v e v                                                         (5) 

In equation (5) 0 ( )y xv  is the initial flow velocity, which varies along the direction 

perpendicular to the flow direction, and v ( , , )i t x y  are the perturbed velocities which 

appear due to excitation of vortices and ion acoustic oscillations inside the plasma flow. 

 

To solve (1)-(4) numerically and to find excited density and electric field perturbations 

and their spectra we first introduce dimensionless variables and rewrite the system of 

equations in dimensionless form. For the ion dimensional mass density i and 

dimensional number density iN  we introduce dimensionless mass i  and number 

densities iN  as                                                          

 0max i 0max i 0max 0max( , ) ( , )      ( , )     i i ix y x y N n N x y M n             (6)       

where 0max and 0 maxn  are maximum dimensional mass and number densities and iM is 

the dimensional ion mass. 

Now we introduce dimensionless time according to 

                             pit t ,                                                                          (7) 

where the dimensional ion plasma frequency is given by 

                                      
2 2

0 max4 i
pi

i

Z e n

M


   ,                                                            (8) 

and t  is dimensional time. 

We normalize the space variables as 

                                    yi ix x y     ,                                                          (9) 

where i  is the distance between two grid points.  

For the dimensionless ion velocity in the flow we use 

                      i i i( , )= ( , )piu x y u x y  .                                                         (10) 

 For the dimensionless electrostatic potential of the excited perturbations we introduce  
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2 2

iM
( , )= ( , )

pi i
x y x y

Ze

 
   .                                                    (11) 

Finally, for the dimensionless mass and number density we use 

                                 i i
i i

0 max 0 max

N
= = =N

n





.                                                            (12) 

Now we can rewrite the main system of Equations 1–4 in the dimensionless and 

conservative form as follows: 

Momentum equations: 

   
2 2 2

2 2 2 2

( )
( ) ( )

( ) ( )

i ix
i ix ix i ix iy

Di i in in i
i i ix nx i ix

i i pi pi i

N u
N u u N u u

t x y

r N
N N u u N u

x x m x y

  

  

     

     

  


      

 

      (13)                                    

 

    
2 2 2

2 2 2 2

( )
( ) ( )

( ) ( )

i iy

i iy ix i iy iy

Di i in in i
i i iy ny i iy

i i pi pi i

N u
N u u N u u

t x y

r N
N N u u N u

y y m x y

  

  

     

     

  


      

 

     (14)                                      

Mass conservation equation: 

( ) ( ) 0i
i ix i iy

N
N u N u

t x y

  

  
                                                       (15) 

Poisson equation: 

2

21 1
( )

( / )

pi

i i

e i

Z N
Z Z T M


                                                       (16) 

Equation for adiabatic electrons: 

2 2

0 0 0exp 1
i pi i

e e e e

e e e

Me e
N N N N

T T ZT

     
      

   
             (17) 

In Equations 13–17 we also used: 

     

2 2
2 4

       i
e i pi

i

Z e N
N ZN

M


   ,                                                  (18) 
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where Z is the charge number of ions. 

Using the above dimensionless system of equations we investigate the linear and 

nonlinear stages of 

1. Vortices with 0 v   

2. Ion acoustic fluctuations. 

We choose the following Gaussian initial velocity profile (see Figure 2): 

2

0 2

( )
( ) exp

2

mid
y

wid

x x
v x

x

 
  

 
                                               (19) 

where 1 1
2 8

 ,    ,mid x wid xx L x L  and Lx is the size of the simulation box in the x 

direction. Note that this profile has inflection points (a necessary condition for the 

excitation of vortices) and it can also be responsible for the excitation of ion acoustic 

waves inside the plasma flow. 

            

Fig. 2.  Gaussian initial velocity profile (red) and its derivative (blue) for the  

              dimensionless speed.  

 

Below we present an algorithm for the numerical solution of the system of Equations 13– 

17 initialized with the Gaussian flow velocity profile (see Equation 19). The 

dimensionless time evolution equations are solved using temporal and spatial finite 
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differences. They are integrated in time using a robust two-step predictor corrector with 

an optional Lax step in the predictor [7, 8]. The time integration scheme is illustrated here 

using the density equation, where the density is denoted by N and the superscripts denote 

time levels as n t  (or just * for the predictor step time index) and the subscripts spatial 

locations as i x  and j y , where s indicate the unit steps in time and space. 

 

Predictor: 

           

      
      
   

   

1
, , 2 1, 1,

1
2 , 1 , 1

1, , 1,

, 1 , , 1

0.5*

0.5*

0.5* 2

0.5* 2*

n nn

i j i j x xi j i j

n n

x xi j i j

n n n

i j i j i j

n n n

i j i j i j

N N t NV NV

t NV NV

t D N N N

t D N N N



 

 

 

 

     
 

    
 

      

     

       (20) 

Optional Lax Step in Predictor: 

Lax:         1
, 1, 1, , 1 , 14

n n n n n

i j i j i j i j i jN N N N N   
       

No Lax:    , ,

n n

i j i jN N  

Corrector: 

                             

    
      
   

   

1 1
, , 2 1, 1,

1
2 , 1 , 1

1, , 1,

, 1 , , 1

2

2*

n n

i j i j x xi j i j

x xi j i j

n n n

i j i j i j

n n n

i j i j i j

N N t NV NV

t NV NV

t D N N N

t D N N N

 

 

 

 

 

 

     
 

    
 

      

     
                      (21)

 

Note that diffusion acts only on the perturbed part of the density. 

One unique feature of our numerical algorithm is the use of well-established templates 

which are repeatedly employed to perform first and second derivatives in space-centered 

finite difference form in both the x and y directions. These are the only derivatives used, 
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given the conservative formulation of the convective nonlinearities in all three dynamical 

equations. Also, the Poisson equation is solved using Fast Fourier Transforms as 

incorporated in the FFT2 set of routines long used in particle-in-cell codes developed 

over many decades at UCLA [9]. Thus the Poisson equation reduces to 

                              

 
1

2 i

e

T

k kT
k n



   ,                                                      (22) 

with kn  representing the perturbed density in k-space only and its multiplier constituting 

the so-called form factor where an appropriate digital filter can be incorporated if needed. 

Furthermore, a dynamic time step of integration has been implemented in our algorithm 

whereby the instantaneous time step is adjusted to the inverse of one-half of the 

maximum x or y velocity anywhere on the grid thereby insuring that the Courant stability 

and accuracy condition [7, 8] is satisfied at all time in the nonlinear calculations. 

Boundary conditions other than periodic (and even periodic for ease of testing of the 

bounded implementation) have been incorporated in our algorithm using the image 

charge method [10]. This means that the appropriate image system is replicated from the 

physical one with the correct parity. As an illustration, if the derivative of the density is to 

go to zero at the physical boundary or, put in another way, if the density is continuous 

across that boundary, then the density in the image system is such that 

                                            (2 ) ( )xN L x N x   .                                                     (23) 

Periodic boundary conditions imposed over the extended system result in 

                                             ( ) ( )xN L x N x    ,                                                      (24) 

whereas density going to zero at the wall would look like: 

                                                (2 ) ( )xN L x N x   .                                                 (25) 

So doing, the boundary is actually between the last grid point in the physical system and 

the first grid point in the image system taking the right-most boundary as an example. 

The parity for the other terms in the equations consistently follows from the choice made 

for N. Even though the image method results in twice the expense, it is much to be 

desired for symmetric boundary conditions (i.e. the same boundary conditions imposed at 

both boundaries) because of its simplicity and ease of implementation. Results below are 

for the flow-driven ion acoustic instability, with uniform density and Gaussian velocity 
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profile, and Te=Ti=1.0. The parameters are such that 
Ti pi iV   .  With Te=Ti it also 

follows that the unit grid spacing i Der   where 
Der  is the Debye radius of electrons.  

The plots below (Figures 3-6) are for maximum flow speed equal to 2.5 times the speed 

of sound:  

0max 2.5 Su C    .                                                         (26) 

In Figure 3 the excitation of ion acoustic oscillations by a flow with a velocity shear in 

the form of a Gaussian profile is presented. The black curve corresponds to the 

normalized kinetic energy of the flow. The blue and red curves correspond to 

dimensionless density and electrostatic potential versus dimensionless time, respectively. 

                         
Fig. 3. The black curve corresponds to the normalized kinetic energy of the flow. The 

blue and red curves correspond to dimensionless density and electrostatic potential versus 

dimensionless time, respectively. 

 

It is clear that the source of the energy for the instability development is the kinetic 

energy of the plasma flow. Ion density and electrostatic potential have the same growth 

rate. Saturation of instability in the nonlinear stage is connected with ion dissipation.  

 

Growing perturbations of the electrostatic potential   at different moments in time are 

presented in Figures 4 and 5. According to Equation 17 the electron density perturbation 

eN  follows the perturbations of the potential. 
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                                                  Fig. 4.  Potential at 900pit    

 

 

                                      

                                              Fig. 5.  Potential at 3000pit    
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The formation of large scale structures in the potential can be observed in Figure 5. Note 

that these density structures are centered in the regions of maximum velocity gradient, 

associated with the Gaussian velocity profile. In Figure 6, the kx and ky spectra of the 

density fluctuations are presented. The decay index  of the amplitude of the density 

fluctuations with respect to normalized kx and ky  is found to be within the interval  

2.15 1.98    .  

                                

                         Fig. 6. Spectra in kx  and ky  of the density fluctuations 

 

The results of the spectrum analysis also show that the decay index of the k-spectrum is 

highly dependent on the temperature ratio e

i

T
T  and on the maximum of the flow velocity 

0maxu . 

 

3.  ELECTROMAGNETIC WAVE SCATTERING  

Below we present an analysis of the scattering of EM waves on density perturbations 

associated with ion acoustic turbulence excited by a plasma flow with velocity shear. The 
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amplitudes and spectra of the scattered waves, as well as the scattering cross section for 

the EM wave propagating through the plasma sheath, are evaluated. The mechanism of 

generation of scattered waves is connected with appearance of induced charges and 

currents under the action of the incident EM wave. We will investigate the interaction of 

incident wave and low frequency turbulent pulsations inside a plasma sheath, which are 

assumed to be relatively small. In this case we can separate the incident and scattered 

waves. On the other hand, the process of the interaction of the incident wave with the 

turbulent plasma pulsations requires the use of nonlinear equations. The nonlinear current 

generated by this process in the case of a high frequency incident electromagnetic wave 

contains only an electron component. The dispersion properties of waves involved in the 

scattering process are presented in Figure 7, where the wave frequency is schematically 

plotted as a function of the wave number k . It follows that different scenarios are 

possible from the analysis of the dispersion of the electromagnetic, electrostatic 

Langmuir, and ion acoustic waves involved in the scattering process. 
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Fig. 7.  Dispersion curves of waves inside the plasma sheath: 

      1 – electromagnetic wave with the dispersion: 2 2 2

k pe k c    

      2 – Langmuir wave with the dispersion: 2 23
(1 )

2
k pe Dek r   ,   where Te

De

pe

V
r


  is the 

electron Debye radius, 
TeV  is electron thermal  velocity and 

pe is the electron 

plasma frequency. 

      3 – Ion acoustic wave with the dispersion: 
2 21

pi

k

Dek r




 




where 
pi  is the ion plasma 

frequency. 

 

In the case when the frequency of the incident EM wave is much larger than the electron 

plasma frequency (
0 pe

  ), the scattered waves will also be electromagnetic with 

frequencies in the range 
0 A  , where frequency 

A
 belongs to the wave from the ion 

acoustic wave spectrum excited in the plasma flow. In the case when the frequency of the 

incident EM wave is close to the plasma frequency (
0 pe

  ) two processes can take 

place: 
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1. Scattering of the incident EM wave into another electromagnetic wave with 

frequency 
0 A  . 

2. Transformation of an incident EM wave into a Langmuir wave with frequencies 

in the range 
0 A  . 

 

We first investigate the scattering of an incident EM wave with frequency
0 pe  . We 

consider a plasma sheath with the following parameters: electron density 8 3

0 10  cmen  , 

electron plasma frequency 85.64 10  rad / secpe   , ion plasma frequency 

62.11 10  rad / secpi   , and the frequency of the incident EM wave 9

0 2 10  rad / sec   . 

The density of the neutral air molecules inside the plasma sheath is taken to be 

11 310  cmNn  . The scattering cross section of electrons on the neutral air molecules for the 

case when the electron energy does not exceed 200 eV can be taken as 

15 2
~ 1.5 10  cm

e



 [11]. For a temperature of electrons ~ 0.01 eVeT  the electron - neutral 

collision frequency can be estimated as: 
2 1

6.29 10 sec
en N Te e

n V 


   . In this report we focus 

attention on the analysis of the scattering of an EM wave with p polarization. This wave 

can be presented in the following form:  

0 00 0, 0exp{ ( )}ki t 
k

E E k r                                           (27) 

where for the components of the electric and magnetic fields in the wave we have: 

0 0 0 0 0{ , ,0};    {0,0, }x y zE E B E B  .                          (28) 

We use the Maxwell’s equations to describe the scattered waves 

                            
1

rot 
c t





 



B
E                                                (29) 

                        
4 1

rot 
c c t

 
 


 



E
B j                                   (30) 

The current j  contains linear and nonlinear parts: 

                          L NL

   j j j .                                                          (31) 

In order to find the linear current L

j  we can use the linearized Vlasov equation for the 

distribution function of electrons: 
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1

{ [ ]} 0
L L

M

e

f f fe

t m c

  
 

  
     

  
v E v B

r v
 .                (32) 

In Equation 32 Lf   is the linear part of the distribution function of plasma electrons 

associated with the electric and magnetic field of the scattered wave. Mf  is the zeroth 

order Maxwellian distribution function: 

2 2 2

00

3/2 3 2

v (v ) v
exp

(2 ) 2

x y y ze
M

Te Te

un
f

V V

    
  

  

  ,                            (33) 

where 0 yu  is the flow speed. 

The linear current L

j   is the first moment of the distribution function: 

                         
3vL Le f d   j v   .                                        (34) 

To solve Equation 32 we will choose the system of coordinates moving together with the 

plasma flow: 

         0v v ;     v v ;    v vx x y y y z zu                                  (35) 

                   0 y yu t  r r e                                                      (36) 

where v and r are in the new coordinate system while v  and r are in the laboratory 

system. In the new system of coordinates we should replace the frequency of the incident 

wave by the Doppler-shifted frequency: 

                             0 0 0 0y yk u   ,                                       (37) 

where   is in the new system of coordinates and   in the laboratory system. Now it is 

possible to write equations for the components of the electric field in the scattered waves 

in the following form:  

22
2 2

2 2 2

4
[ ( )]

pe NL

x y xk xkk k E i j
c c c

 
 

 
       ,                (38) 

22
2 2

2 2 2

4
[ ( )]

pe NL

x y yk ykk k E i j
c c c

 
 

 
       .                (39) 

On introducing ( , )k    , defined as 

22 2
2 2

2 2 2
( ) ( , )

pe

x yk k
c c c

 
  

        k  ,                       (40) 
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we represent (38) and (39) as: 

2

2 2

4
( , ) NL

ki
c c

 
 

 

 
    kk E j .                      (41) 

Now we calculate the nonlinear current NL

k
j  which is responsible for the scattered waves 

generated by the interaction of the incident EM wave with low frequency ion acoustic 

type perturbations. First we represent the distribution function F of electrons in the form 

F  fM  f0  f1
  fA ,                                                (42) 

where Mf  is the Maxwell distribution given by Equation 33, 0f  is the perturbed 

distribution due to the presence of the EM wave, 1 1 1

L Nf f f       are the linear and 

nonlinear parts of the perturbed distribution function due to the presence of the scattered 

signals, and Af  corresponds to the perturbation of the distribution function due to the 

presence of ion acoustic turbulence. The equation for the distribution function associated 

with the nonlinear generation of scattered waves has the form 

01 1
0 0

1 1
{ [ ]} { [ ]}

N N

A
A A

e e

ff f fe e

t m c m c

  
 

  
       

   
v E v B E v B

r v v
     (43) 

In Equation 43 0E  and 0B  are the wave fields of the incident EM wave, AE  is the 

electric field in electrostatic ion acoustic perturbations, and  0A B . We use Fourier 

transforms to solve (43). If we take the following expression for the incident EM wave: 

0 00 0( , ) sin( )t t k kE r E k r ,                                         (44) 

its Fourier components are given as 

0 00 , 0 0 0 0

1 1
( ) ( ) ( ) ( )

2 2
k

i i
               k kE E k k E k k .                  (45) 

The Fourier transform for the ion acoustic waves has the form 

3

4

1
( , )exp{ ( )

(2 )A A
k A A A

t i t d dt


  


 E E k k r r .                           (46) 

The Fourier components of the nonlinear part of the distribution function of scattered 

waves are given as 

      0

, , 0 0 ,

1 1 1
[( ) ] [ ]

N A

A

e e

ie f ie f
f F F

m c m
  

 
 

 

 
   

     
k k k

E v B E
k v v k v v

      (47) 
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In Equation 47 the operator 
,F k

stands for the Fourier transformation applied to the 

expression in the brackets.The induced plasma current due to the interaction of the 

incident EM wave and ion acoustic waves (responsible for excitation of scattered waves) 

is given by 

                             
3

, ,

N N

k ke f d    j v v .                                   (48) 

Using Equation 47 for N

k 
 

j we obtain 

                       , 1 2 33

N

     kj j j j  ,                                     (49) 

where 

'
0 0

2
3

1 , , '

1
 k A

e

ie
f d d

m
  

  
  


  

    k k
j v E k

k v v
 ,               (50) 

'

2
3 3

2 0, ' ' , , '

1 1
v [ ] ' 'k A

e

ie
d f d d

m c
  

  
  


   

    k k
j v v B k

k v k
 ,    (51) 

and   '

2
3

3 , ' ' 0, , '

1
[ ' ']A

e

ie
f d d

m
  

  
  


 

    k k k
j v E k

k v v
  .            (52) 

It is possible to show that: 

                     2

1

| |
~ 1

| |



 




j k v

j
                                               (53) 

and  

              | j3 |~
eA

mec
2

| jk,

N |    | jk,

N |  .                        (54) 

Taking into account (53) and (54) we finally have for the current which is responsible for 

the excitation of scattered waves 

 
2

3

, 0, ', ' , , '

3
 N

k A

e

ie
n d k d

m
     


 

   k k k
j E  .                        (55) 

Now with the help of Equation 41 we have  

    

2

3

, 0, ', ' , ', '2

, 0

3
' '

pet

At
n d k d

n
   




 

 
  k k k k

k

E E  ,               (56) 

where ,

t

kE is the Fourier transform of the scattered electromagnetic waves, and 
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2 2 2

, 2 2
1

pet k c





 
  k  .                                                (57) 

The spectrum of the scattered electromagnetic field (Equation 56) in fact consists of two 

parts, , ,  and      k kE E , where 

                  0   A  k k k                                                    (58) 

 and     0    A                                                       (59) 

In Equations 58 and 59, 0  k is the wave vector of the incident EM signal and  Ak is the 

wave vector from the turbulent spectrum of the ion acoustic waves. Using (56), (58), and 

(59) we obtain  

              

0 0

2

3

, 0, ', ' , ', '2

, 0

2

0

2

, 0

3
' '

3
[ ] .

2

pe

At

pe A A

t

n d k d
n

n n
n i

   






 

 


 

 

 

 



 

k k k k

k

k k k k

k

E E

E
                      (60) 

Instead of the field given by (60) we can introduce fields 
, 



kE  and 
, 



kE , where 

 , k  and   , k  are given by (58) and (59), respectively. Now, taking into account 

that 
*t t 

  k k from (60) we obtain 

            

2

*

, 0 ,2

, 0

3

2 A A

pe A

t
n

i n
 






  

 





k k

k

E E .                       

A similar expression can be obtained for , 



kE .The electric field in real space is given 

by 

, exp[ ( )A Ad d i t 
 

 

   kE k E k r .                      (61) 

From Equation 61 it is clearly seen that the spectrum of scattered waves consists of 

shifted wave vectors and frequencies, proportional to the wave vectors and frequencies in 

the spectrum of ion acoustic waves excited by a flow with velocity shear. The expression 

for the nonlinear current (Equation 55) can be written in the form 
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0 0 0 0

2
3

, 0, ', ' , ', '

2

0 , ,

0

3
' '

3
[ ].

8

N

k A

e

pe

ie
n d k d

m

n n
n

   

   

  



 

 

 

   



 

 k k k

k k k k

j E

E

              (62) 

Again, from Equations 58 and 59 we get 

              

2

*

, , 0 ,

0

3

8 A A

pe

N n
n

 


 

  





k kj E                               (63) 

and    
,, exp[ ( )N A A Nd d i t   

 

 

   kj k j k r                  (64) 

In order to calculate the scattered power we should define the increase in the energy of 

scattered waves during one second as 

       * 3Re ( , ) ( , )NQ r t r t d r        j E  ,             (65)           

where Re means the real part, *( , )r t
E  is the complex conjugate of the scattered 

electromagnetic field,  and  <…> denotes time average. Further, using the following 

relations,  

            
0 0

2

*

0 ,

0

3 1
( , ) exp[ ( )]

8

pe

N r t d d n i t
n

 


   

   



     



  k kj k E k r         (66) 

and ' '
0 0

' '

2

' ' * ' '

0'2 ,
0 ,

3 1 1
( , ) exp[ ( )]

8

pe

t
r t d d n i t

n  




  

    

 



    


  k k

k

E k E k r     (67) 

 we finally obtain 

       
0 0

' '

32 4

2 * 2

02 * 3 ,
0 ,

9
Re | |

pe

t

i
Q E d d n

n  



 
  

   

 



   


   k k

k

k    (68) 

with the density spectrum defined as 

2

, , 2 2 2 2

1
| |

( )Ax Ay Ak k

Ax Ay A

A
n

k k






,                               

where A ~ 0.1, based on our numerical results. 

Knowledge of (68) allows us to calculate the scattering cross section    due to the 

presence of ion acoustic turbulence as 

                                   
2

0

4

Q

E
c







   ,                                     (69) 
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where    is defined as the ratio of the scattered power (defined as the work done per unit 

time by the field created by the nonlinear current) to the energy flux of the incident  EM 

signal. From Equation 68 we see that it is necessary to include dissipative terms in the 

expression for  tk, , otherwise Q
 0 . Taking into account collisions of electrons with 

neutrals we have 

                 

2 22 2

, 2 2 3

2 22 2

1, , 2, ,2 2 3

1

1 .

pe en pet

pe en pet t

k c
i

k c
i



 

  


  

  
 

  

   

   

k

k k

                  

Now we can write 

             
2, ,

* 2 2

, 1, , 2, ,

Re( ) .
( ) ( )

t

t t t

i 

  



  
 



k

k k k

                       (70) 

There are two ways to calculate the integral in (68). In the first case, which we can call 

non-resonance, scattered waves are not plasma eigenmodes, i.e., 

                                      1 ( , ) 0t   k  ,                                (71) 

and this results in 

                                        
  k .                                         (72) 

In the second instance, the resonance case, we have 

                                      1 ( , ) ~ 0t  k                                 (73) 

and  [5, 6] 

         
*

1,
( )

( )
Re( )

k

Lt

k

i


 

  








 








 




k

  .                                  (74) 

It follows from the dispersion properties of the EM and ion acoustic waves that (for the 

range of frequencies and plasma parameters of interest) we should consider the non-

resonance case (Equation 71).  Using (70) in the integral for the scattering cross section 

given in (69) and performing the numerical integration one obtains the following results.  

When the width of the plasma sheath is varying in the interval 

                                3   15 cmxL                                    (75) 

the amplitude of the scattered waves is found to belong to the interval 
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                           5 1

0

10     10  
E

E

   ,                            (76) 

where 0E is the amplitude of the incident EM wave. The corresponding scattering cross 

sections belong to the interval: 

                          17 8 210  10  cm                                (77) 

It is also worth mentioning that the phase change in the scattered waves can impact the 

phase-locking-in process for signals from GPS satellites.  This is connected with the fact 

that the absolute values of the wave vectors of scattered waves 0 A  k k k , due to the 

inequality 0   kAk , can be responsible for a significant change of the integrated phase 

shift ~ k dx  .                                 

  

4. TRANSFORMATION TO LANGMUIR WAVES 

 

Below we present an analysis of the transformation of the incident EM signal into a 

Langmuir wave due to interaction with density perturbations associated with ion acoustic 

turbulence excited by a plasma flow with velocity shear around a hypersonic vehicle. The 

transformation process can take place when the frequency of the incident EM signal is 

close to the electron plasma frequency inside the sheath. This corresponds to an electron 

plasma density 10 3~10  en cm . The efficiency of the transformation of an EM wave (in 

our case it is the GPS signal) propagating through a plasma sheath into an electrostatic 

Langmuir wave on ion acoustic density perturbations will be evaluated. We also show 

that inside the plasma sheath the process of transformation is resonant in nature, in 

contrast to the EM signal scattering into an electromagnetic wave. As a result the excited 

wave amplitudes as well as the scattering cross section for this process are much larger 

than the corresponding quantities in the case of scattering into an electromagnetic wave. 

The mechanism of appearance of electrostatic Langmuir waves is connected with 

transformation of an incident EM wave on ion acoustic density perturbations by induced 

charges and currents. So in the process of this interaction another type of wave – an 

electrostatic Langmuir wave – is generated and this is the reason it is called a wave 

transformation. 
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Dispersion properties of waves involved in the scattering process are presented in Figure 

1. Below we concentrate on the case when 
0 pe

   (frequency of the EM wave is slightly 

above the plasma frequency inside the sheath) and transformation of the EM signal into 

an electrostatic Langmuir wave on ion acoustic density perturbations is possible. We will 

consider a plasma sheath with the following parameters: electron density 

10 3

0 ~10  cmen  , so that the electron plasma frequency is slightly smaller than the 

frequency of the incident EM wave (GPS signal 9

0 ~ 2 10  rad / sec   ). The density of 

neutral air molecules inside the plasma sheath is taken to be 11 310  cmNn  . As in the 

previous section, we analyze the scattering of an electromagnetic wave with p 

polarization (see (28)).  

 

The scattered Langmuir wave being an electrostatic wave, will have the following 

polarization: 

1 1 1 1{ , ,0};    {0,0,0}.x yE E E B                               (78) 

To describe the scattered wave we use the Poisson equation: 

                        v 4di en 

  E ,                                        (79) 

where        and   4 en  

    E                            (80) 

The density n  contains linear and nonlinear parts 

                         L NLn n n    .                                            (81) 

In order to find the linear density perturbation Ln  we use the linearized Vlasov equation 

for the distribution function of the electrons: 

v 0
v

L L

M

e

f f fe
E

t r m

  


  
   

  
 .                           (82) 

In equation (82) Lf   is the linear part of the distribution function of plasma electrons 

associated with the electric field of the scattered wave. Mf denotes the zeroth-order 

Maxwellian distribution function defined as 
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x y y ze
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V V

  
          (83) 

where 0 yu  is the flow speed. The linear density perturbation Ln   is the zero-th order 

moment of the distribution function given as 

                             3vL Ln f d    .                                 (84) 

To solve (79) we, as in the previous section, choose the system of coordinates moving 

together with the plasma flow, and hence obtain 

0L e
M

e

en
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and 
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where Ln
k

represents the linear part of the density fluctuations. After substituting (86) into 

(4) we finally write the Poisson equation as  

2( , ) 4L NLk en  
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where  
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with ( )w z  defined as 
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Finally, the Fourier component of the scattered Langmuir wave field can be written as 
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Hence we obtain the following expression for the scattering cross section: 
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Taking into account that scattered Langmuir waves are now the plasma eigenmodes, we 

make use of expression (74) in Equation 92. Also we use the following expression for the 

scattering cross section for the numerical integration: 
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with the density spectrum defined as 
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where according to numerical results A ~ 0.1. Now, when the width of the plasma sheath 

is within the interval 

                               3   15 cmxL                                    (95) 

the amplitudes of the scattered Langmuir waves are found to be much larger in 

comparison with the amplitude of the scattered EM waves. The ratio of the scattered 

Langmuir wave amplitude LE  to the amplitude 0E  of the incident EM wave was found 

to be in the interval 

                           2

0

10     1 
LE

E

   .                                   (96) 

Corresponding scattering cross sections are in the interval 

                          5 3 210  10  cmL
    .                            (97) 
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5. SUMMARY 

 

The purpose of the work is to understand the influence of a plasma flow with velocity 

shear on the properties of incident EM waves used for communication purposes. This 

report consists of two parts. In the first part we have investigated the excitation of low 

frequency turbulence inside a plasma flow with velocity shear. We have demonstrated 

that the flow with a Gaussian velocity profile excites low frequency turbulence associated 

with appearance of the vortices and electrostatic ion acoustic type oscillations. In the 

second part of the report we analyzed the scattering of an incident EM wave on excited 

turbulent pulsations associated with the ion acoustic type waves.  It is shown that in the 

case when the frequency of the incident EM wave is much greater than the electron 

plasma frequency, the scattered waves will be also electromagnetic with frequencies in 

the range 0 A  , where the frequency A belongs to the wave from the ion acoustic 

wave spectrum excited in the plasma flow. The scattered EM waves in this case are not 

plasma eigenmodes and can exist only as forced perturbations in the vicinity of the region 

where they were generated. It is also worth mentioning that a similar type of scattering 

(only with different type of waves involved) was observed during the active experiments 

in the ionospheric plasma, analyzed in [12, 13]. 

In the case when the frequency of the incident EM wave is close to the plasma frequency 

(
0 pe

  ) two processes can take place: 

1. Scattering of the incident EM signal into an electromagnetic wave with 

frequencies    
0 A  . 

2. Transformation of an incident EM wave into Langmuir waves with frequencies in 

the range 
0 A  . 

The scattered EM waves in this case are not plasma eigenmodes, but the Langmuir waves 

are. As a result the scattering cross section for the processes involving Langmuir waves 

inside a plasma sheath is much higher. 
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